Automated layer-wise solution for ensemble deep randomized feed-forward neural network

نویسندگان

چکیده

The randomized feed-forward neural network is a single hidden layer that enables efficient learning by optimizing only the output weights. ensemble deep framework significantly improves performance of networks. However, framework’s capabilities are limited traditional hyper-parameter selection approaches. Meanwhile, different random architectures, such as existence or lack direct link and mapping links, can also strongly affect results. We present an automated pipeline for in this paper, which integrates architectural search via Bayesian optimization to ensure robust performance. Experiments on 46 UCI tabular datasets show our strategy produces state-of-the-art various among range networks conduct ablation studies investigate impact hyper-parameters architectures.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Layer-wise Relevance Propagation for Deep Neural Network Architectures

We present the application of layer-wise relevance propagation to several deep neural networks such as the BVLC reference neural net and googlenet trained on ImageNet and MIT Places datasets. Layerwise relevance propagation is a method to compute scores for image pixels and image regions denoting the impact of the particular image region on the prediction of the classifier for one particular te...

متن کامل

Feed Forward and Backward Run in Deep Convolution Neural Network

Convolution Neural Networks (CNN), known as ConvNets are widely used in many visual imagery application, object classification, speech recognition. After the implementation and demonstration of the deep convolution neural network in Imagenet classification in 2012 by krizhevsky, the architecture of deep Convolution Neural Network is attracted many researchers. This has led to the major developm...

متن کامل

Signal Prediction by Layered Feed - Forward Neural Network (RESEARCH NOTE).

In this paper a nonparametric neural network (NN) technique for prediction of future values of a signal based on its past history is presented. This approach bypasses modeling, identification, and parameter estimation phases that are required by conventional parametric techniques. A multi-layer feed forward NN is employed. It develops an internal model of the signal through a training operation...

متن کامل

Feed forward neural network entities

Feed Forward Neural Networks (FFNNs) are computational techniques inspired by the physiology of the brain and used in the approximation of general mappings from one nite dimensional space to another. They present a practical application of the theoretical resolution of Hilbert's 13 th problem by Kolmogorov and Lorenz, and have been used with success in a variety of applications. However, as the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Neurocomputing

سال: 2022

ISSN: ['0925-2312', '1872-8286']

DOI: https://doi.org/10.1016/j.neucom.2022.09.148